Swarm Intelligence
 Ant Colony Optimization

Based on slides by Thomas Bäck, which were based on:
Marco Dorigo and Thomas Stützle: Ant Colony Optimization. MIT Press, Cambridge, MA, 2004.

Examples of

Collective Intelligence in Nature

Termite hill

Nest of wasps

Bee attack

Swarm Intelligence

- Originated from the study of colonies, or swarms of social organisms
- Collective intelligence arises from interactions among individuals having simple behavioral intelligence
- Each individual in a swarm behaves in a distributed way with a certain information exchange protocol

Communication

- Point-to-point: information between individuals or between an object and an individual is directly transferred
- direct visual contact, antennation, trophallaxis (food or liquid exchange), chemical contact, ...
- Broadcast-like: the signal propagates to some limited extent throughout the environment and/or is made available for a rather short time
- generic visual detection, use of lateral line in fishes to detect water waves, actual radio broadcast
- Indirect (stigmergy): two individuals interact indirectly when one of them modifies the environment and the other responds to the new environment at a later time
- pheromone laying/following, post-it, web

Ant Colony Optimisation

What is special about ants?

- Ants can perform complex tasks:
- nest building, food storage
- garbage collection, war
- foraging (to wander in search of food)
- There is no management in an ant colony
- collective intelligence
- They communicate using pheromones
- Curiosities:
- Ant colonies exist for more than 100 million years
- Myrmercologists estimate that there are around 20 ooo species of ants

Double Bridge Experiments

- A study on the pheromone trail-laying and -following behavior of Argentine ants
- A double bridge connects a nest of ants and a food source
- The ratio $r=L_{\text {long }} / L_{\text {short }}$ between the length of the two branches of the double bridge is varied
- Ants are free to move between the nest
 and the food

[^0]
Double Bridge Experiments

- In most of the trials, almost all the ants select the short branch (exploitation)
- Not all ants use the short branch, but a small percentage may take the longer one (exploration)

Foraging Behavior of

Argentine Ants

- Ants initially explore the area surrounding their nest randomly
- Argentinian ants deposit pheromones everywhere they go
- When choosing their way, ants prefer to follow strong pheromone concentrations
- Pheromones defuse over time

Foraging Behavior of

Argentine Ants

- How do Argentine ants find the shortest path?
- The ants that take the shortest path arrive at the food source first
- They return over the path that they took to get there, reinforcing the pheromones they deposited when going to the food source
- Other ants notice the trail and follow it, reinforcing it further
- Hence, during the "start" of the experiment the advantage that ants on the shortest path had is reinforced

Alternative experiment

- An obstacle is put in the path of ants

a) - Ants follow path between the Nest and the Food Source

c) Ants on the shortest path arrives at the food source first; on the way back they will follow the pheromones on the shortest path again

b) - Ants go around the obstacle following one of two different paths with equal probability

d) - At the end, all ants follow the shortest path.

Simple Ant Colony Optimisation: Shortest Paths

- Artificial ants going "forward"
- choose probabilistically the next node on their path, exploiting pheromones
- do not drop pheromones
- memorize the path they take
- Artificial ants going "backward"
- deterministically follow the path they took earlier
- drop pheromones proportionally to the quality of the path taken earlier

Simple ACO: Shortest Paths

initialize pheromones
for each iteration do
for $k=1$ to number of ants do
set out ant k at start node
while ant k has not build a solution do choose the next node of the path
end while end for
update pheromones
end for
return best solution found

Simple ACO: Shortest Paths

- For an ant located at node v_{i} the probability $p_{i j}$ of choosing v_{j} as the next node is:

$$
p_{i j}^{k}= \begin{cases}\frac{\left(\tau_{i j}\right)^{\alpha}}{\sum_{m \in N_{i}^{k}\left(\tau_{i m}\right)^{\alpha}}} & \text { if } j \in N_{i}^{k} \\ 0 & \text { if } j \notin N_{i}^{k}\end{cases}
$$

where

- $\tau_{i j}$ is the amount of pheromones on edge $i \rightarrow j$
- N_{i}^{k} is the set of neighbors of node i not visited by ant k yet (tabu list)

Simple ACO: Shortest Paths

- Change in pheromone for an ant k on edge $\mathrm{i} \rightarrow \mathrm{j}$

$$
\Delta \tau_{i j}^{k}= \begin{cases}Q / L_{k} & \text { if }(i, j) \in T_{k} \\ 0 & \text { otherwise }\end{cases}
$$

where:

- Q : a heuristic parameter
- T_{k} : the path traversed by ant k
- L_{k} : the length of T_{k} calculated as the sum of all lengths of edges in T_{k}

Simple ACO: Shortest Paths

- Pheromone update on an edge $\mathrm{i} \rightarrow \mathrm{j}$

$$
\tau_{i j}=(1-\rho) \tau_{i j}+\sum_{k=0}^{m} \Delta \tau_{i j}^{k}
$$

with

- ρ : the evaporation rate of the old pheromone

Simple ACO: Shortest Paths

Simple ACO: Shortest Paths

Simple ACO: Shortest Paths $Q=1, \rho=0.1$

	$\tau_{\text {old }}$	$\Delta \tau_{\mathrm{ij}}{ }^{1}$	$\Delta \tau_{\mathrm{ij}}{ }^{2}$	$\Delta \tau_{\mathrm{ij}}{ }^{3}$	$\Delta \tau_{\mathrm{ij}}$	$\tau_{\text {new }}$
$(1,2)$	0.6	$1 / 15$	0	$1 / 16$	$1 / 15+1 / 16 \approx 0.129$	$0.6^{*} 0.9+0.129=0.669$
$(1,3)$	0.5	0	$1 / 18$	0	$1 / 18 \approx 0.055$	$0.5^{*} 0.9+0.055=0.505$
$(2,3)$	0.7	0	0	$1 / 16$	$1 / 16 \approx 0.063$	$0.7^{\star} 0.9+0.063=0.693$
$(2,4)$	0.4	$1 / 15$	$1 / 18$	0	$1 / 15+1 / 18 \approx 0.122$	$0.4^{*} 0.9+0.122=0.482$
$(2,6)$	0.3	0	$1 / 18$	0	$1 / 18 \approx 0.055$	$0.3^{*} 0.9+0.055=0.325$
$(3,4)$	0.3	0	$1 / 18$	$1 / 16$	$1 / 18+1 / 16 \approx 0.118$	$0.3^{*} 0.9+0.118=0.388$
$(3,5)$	0.3	0	0	0	0	$0.3^{*} 0.9+0=0.27$
$(4,5)$	0.5	$1 / 15$	0	0	$1 / 15 \approx 0.067$	$0.5^{*} 0.9+0.067=0.517$
$(4,6)$	0.6	0	0	$1 / 16$	$1 / 16 \approx 0.063$	$0.6{ }^{*} 0.9+0.063=0.603$
$(5,6)$	0.4	$1 / 15$	0	0	$1 / 15 \approx 0.067$	$0.4^{*} 0.9+0.067=0.427$

Simple ACO: Shortest Paths

- Low $\rho \rightarrow$ low evaporation \rightarrow slow convergence, "old" paths continue to be traversed instead of searching new ones
- High $\rho \rightarrow$ high evaporation \rightarrow very fast convergence, but due to limited memory no drive to explore variations of a good path

Ant Systems for the Traveling Salesman Problem

- The first ACO algorithm proposed by Dorigo et al. in 1991

```
procedure Ant System for TSP
    Pheromone Initialization
    while (not terminate) do
        for i= 1 to k do
                        Tour Construction
        end
        Update Pheromones
    end
end
```


Ants for TSP

- For an ant located at node v_{i} the probability $p_{i j}$ of choosing v_{j} as the next node is:

$$
p_{i j}^{k}= \begin{cases}\frac{\left(\tau_{i j}\right)^{\alpha}\left(\eta_{i j}\right)^{\beta}}{\sum_{m \in N_{i}^{k}\left(\tau_{i m}\right)^{\alpha}\left(\eta_{i j}\right)^{\beta}}} & \text { if } j \in N_{i}^{k} \\ 0 & \text { if } j \notin N_{i}^{k}\end{cases}
$$

where

- $\tau_{i j}$ is the amount of pheromones on edge $i \rightarrow j$
- N_{i}^{k} is the set of neighbors of node i not visited by ant k yet (tabu list)
- $\eta_{i j}$ is the heuristic desirability of the edge (i.e. 1 / distance between nodes)

Traveling Salesman Problem

- n cities (5)
- Number of possible paths: $(n-1)$! / 2

Solution using "nearest city" heuristic

Step \#3
Step \#4

Solution using "nearest city" heuristic

- The final solution is obviously non-optimal

- This heuristic can give the optimal solution if it is given a proper initial node

ACO in Travelling Salesman Problem

- m ants
- n cities
- $\eta=1 / d$

The ACO balances the heuristic information with the experience (pheromone) information

Iteration i=1, Ant m=1

- All paths have the same pheromone intensity $\tau_{0}=0.5$
- Pheromone trail and heuristic information have the same weight $\alpha=1, \beta=1, \rho=0.1$
- An ant is randomly placed
- The probability to choose is, in this case, based only on heuristic information

Step \#1

- $P_{12}=31 \%$
- $P_{13}=16 \%$
- $\mathrm{P}_{14}=22 \%$
- $\mathrm{P}_{15}=31 \%$
- Ant m = 1 chooses node 5

Iteration $\mathrm{i}=1$, Ant $\mathrm{m}=1$

Step \#2

Step \#4

$$
f_{1}=2+2+2+\sqrt{5+} \sqrt{17}=12.36
$$

Iteration $\mathrm{i}=1$, Ant m=2

- All paths have the same pheromone intensity $\tau_{0}=0.5$
- Pheromone trail and heuristic information have the same weight $\alpha=1, \beta=1, \rho=0.1$

Step \#1

- An ant is randomly placed
- The probability to choose is, in this case, based only on heuristic information
- P12=31\%
- $P_{13=16 \%}$
- $\mathrm{P}_{14}=22 \%$
- $\mathrm{P}_{15}=31 \%$
- Ant m = 2 chooses node 2

Iteration $\mathrm{i}=1$, Ant m=2

Step \#3

Step \#4
Step \#5

$$
f_{2}=2+\sqrt{5}+\sqrt{5}+2+2=10.47
$$

Iteration i=1, Pheromone Update

- The final solution of ant $\mathrm{m}=1$ is $\mathrm{D}=12.36$. The reinforcement produced by this ant $\mathrm{m}=1$ is $\mathrm{o}, \mathrm{o} 8$.

$$
\mathrm{Q}=1, \mu=\mathrm{Q} / \mathrm{D}
$$

- The final solution of ant $\mathrm{m}=2$ is $\mathrm{D}=10,47$. The reinforcement produced by ant $\mathrm{m}=2$ is 0,095 !

Updating Pheromone Matrix

- The pheromone update can be done following different approaches:
- Considering the pheromone dropped by every ant

$$
\tau(l+1)=\left[\begin{array}{ccccc}
0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 & 0.5
\end{array} \left\lvert\, \times(1-\rho)+\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0.08 \\
0 & 0 & 0.08 & 0 & 0 \\
0.08 & 0 & 0 & 0 & 0 \\
0 & 0.08 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.08 & 0
\end{array}\right]+\left[\begin{array}{ccccc}
0 & 0.095 & 0 & 0 & 0 \\
0 & 0 & 0.095 & 0 & 0 \\
0 & 0 & 0 & 0.095 & 0 \\
0 & 0 & 0 & 0 & 00.95 \\
0.095 & 0 & 0 & 0 & 0
\end{array}\right]\right.\right.
$$

- Considering the pheromone dropped by the best ant of the present iteration

$$
\tau(l+1)=\left[\begin{array}{ccccc}
0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 & 0.5
\end{array}\right] \times(1-\rho)+\left[\begin{array}{ccccc}
0 & 0.095 & 0 & 0 & 0 \\
0 & 0 & 0.095 & 0 & 0 \\
0 & 0 & 0 & 0.095 & 0 \\
0 & 0 & 0 & 0 & 00.95 \\
0.095 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- Considering the pheromone dropped by the best ant in all iterations (after iteration $\mathrm{N}=1$, this is the same as the previous approach)

Updating Pheromone Matrix

- Update the pheromone on each edge by:

$$
\tau(l+1)=\left[\begin{array}{ccccc}
0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 & 0.5
\end{array} \left\lvert\, \times(1-\rho)+\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0.08 \\
0 & 0 & 0.08 & 0 & 0 \\
0.08 & 0 & 0 & 0 & 0 \\
0 & 0.08 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.08 & 0
\end{array} \left\lvert\,+\left[\begin{array}{ccccc}
0 & 0.095 & 0 & 0 & 0 \\
0 & 0 & 0.095 & 0 & 0 \\
0 & 0 & 0 & 0.095 & 0 \\
0 & 0 & 0 & 0 & 00.95 \\
0.095 & 0 & 0 & 0 & 0
\end{array}\right]\right.\right.\right.\right.
$$

Iteration i=2, Ant m=1

- The pheromone trails have different intensities
- Pheromone trail and heuristic information have the same

Step \#1 weight $\alpha=1, \beta=1, \rho=0.1$

- An ant is randomly placed
- The probability to choose is
- P41=19\%
- $\mathrm{P}_{42}=26 \%$
- $\mathrm{P} 43=23 \%$
- $\mathrm{P}_{45}=32 \%$
- Ant m = 1 chooses node 5

Iteration $\mathrm{i}=2$, Ant m=1

Step \#2

Step \#4

$$
f_{1}=2+2+2+\sqrt{5}+\sqrt{5}=10.47
$$

Step \#3

Step \#5

Iteration $\mathrm{i}=2$, Ant m=2

- The pheromone trails have different intensities
- Pheromone trail and heuristic information have the same

Step \#1 weight $\alpha=1, \beta=1, \rho=0.1$

- An ant is randomly placed
- The probability to choose is
- ${ }^{2} 2=26 \%$
- $\mathrm{P}_{23}=29 \%$
- $\mathrm{P}_{24}=26 \%$
- $\mathrm{P}_{25}=19 \%$
- Ant m = 2 chooses node 3

Iteration $\mathrm{i}=2$, Ant $\mathrm{m}=2$

Step \#3

Step \#4
Step \#5

$$
f_{2}=\sqrt{5+} \sqrt{5+2}+2+2=10.47
$$

Iteration $i=2$, Pheromone Update

- The final solution of ant $\mathrm{m}=1$ and $\mathrm{m}=2$ is $\mathrm{D}=10,47$.

The reinforcement produced by each ant is o,095!

Updating Pheromone Matrix

- Considering the pheromone dropped by every ant

$$
\tau(l+1)=\left[\begin{array}{ccccc}
0.45 & 0.55 & 0.45 & 0.45 & 0.53 \\
0.45 & 0.45 & 0.63 & 0.45 & 0.45 \\
0.53 & 0.45 & 0.45 & 0.55 & 0.45 \\
0.45 & 0.53 & 0.45 & 0.45 & 0.55 \\
0.55 & 0.45 & 0.45 & 0.53 & 0.45
\end{array}\right] \times(1-\rho)+\left[\begin{array}{ccccc}
0 & 0.095 & 0 & 0 & 0 \\
0 & 0 & 0.095 & 0 & 0 \\
0 & 0 & 0 & 0.095 & 0 \\
0 & 0 & 0 & 0 & 00.95 \\
0.095 & 0 & 0 & 0 & 0
\end{array}\right]+\left[\begin{array}{ccccc}
0 & 0.095 & 0 & 0 & 0 \\
0 & 0 & 0.095 & 0 & 0 \\
0 & 0 & 0 & 0.095 & 0 \\
0 & 0 & 0 & 0 & 00.95 \\
0.095 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Ant Svstem for TSP

1. Initialize:

Set $t:=0$
Set NC:=0
$\{t$ is the time counter $\}$
For every edge (i, j) set an initial value $\tau_{i j}(t)=c$ for trail intensity and $\Delta \tau_{i j}=0$
Place the m ants on the n nodes
2. Set $s:=1 \quad\{s$ is the tabu list index $\}$

For $k:=1$ to m do
Place the starting town of the k th ant in $\operatorname{tabu}_{k}(s)$
3. Repeat until tabu list is full
\{this step will be repeated

$$
(n-1) \text { times }\}
$$

Set $s:=s+1$
For $k:=1$ to m do
Choose the town j to move to, with probability $p_{i j}^{k}(t)$ given by Eq. (4)
\{at time t the k th ant is on town $\left.i=\operatorname{tabu}_{k}(s-1)\right\}$
Move the k th ant to the town j
Insert town j in $\boldsymbol{t a b u}_{k}(s)$
4. For $k:=1$ to m do

Move the k th ant from $\operatorname{tabu}_{k}(n)$ to $\mathbf{t a b u}_{k}(1)$
Compute the length L_{k} of the tour described by the k th ant
Update the shortest tour found
For every edge (i, j)
For $k:=1$ to m do
$\Delta \tau_{i j}^{k}= \begin{cases}\frac{Q}{L_{k}} & \text { if }(i, j) \in \text { tour described by tabu } \\ 0 & \text { otherwise }\end{cases}$
$\Delta \tau_{i j}:=\Delta \tau_{i j}+\Delta \tau_{i j}^{k} ;$
5. For every edge (i, j) compute $\tau_{i j}(t+n)$
according to equation $\tau_{i j}(t+n)=p \cdot \tau_{i j}(t)+\Delta \tau_{i j}$ Set $t:=t+n$
Set $\mathrm{NC}:=\mathrm{NC}+1$
For every edge (i, j) set $\Delta \tau_{i j}:=0$
6. If ($\mathrm{NC}<\mathrm{NC}_{\mathrm{MAX}}$) and (not stagnation behavior) then

Empty all tabu lists
Goto step 2
else
Print shortest tour
Stop

ACO General Framework

Initialize pheromones
while termination conditions not met do
Construct ant solutions based on the pheromones
Update pheromones
Perform daemon actions (optional) end while

Additional
local search
to improve solutions often
necessary

ACO Variations
 - Elitist Ant System (EAS)

- Rank-Based Ant System (ASrank)
- Min-Max Ant System (MMAS)
- Ant Colony System (ACS)

Elitist Ant Systems

- Modification of the ant system in which the best-sofar solution is reinforced additionally:

$$
\tau_{i j}=(1-\rho) \tau_{i j}+\sum_{k=0}^{m} \Delta \tau_{i j}^{k}+e \cdot \Delta \tau_{i j}^{b s}
$$

With

- bs: the best solution found till now
- e : parameter for the contribution of the best solution

Rank-based Ant Systems

- Each ant deposits pheromone proportional to its rank in the set of ants
- Only the best e solutions deposit pheromones
- The best-so-far solution deposits most pheromones

$$
\tau_{i j}=(1-\rho) \tau_{i j}+\sum_{k=1}^{e-1}(e-k) \Delta \tau_{i j}^{k}+e \cdot \Delta \tau_{i j}^{b s}
$$

where it is assumed that the ants are ordered in the order of the quality of the solution they represent

MAX-MIN Ant Systems

- Ignore all ants, except the best ant in its iteration:

$$
\tau_{i j}=(1-\rho) \tau_{i j}+\Delta \tau_{i j}^{b e s t}
$$

where best is the best ant in the iteration

- To avoid stagnation:
- limit the range of pheromone levels on edges

$$
\tau_{\min } \leq \tau_{i j} \leq \tau_{\max }
$$

- if no better solutions is found after a number of iterations, reinitialize the pheromone levels to the upperbound

Ant Colony Systems

- New rule for picking a neighbor during the ant's traversal of a graph
with $j= \begin{cases}\arg \max _{l \in N_{i}^{k}} \tau_{i l}\left(\eta_{i l}\right)^{\beta} & \text { if } q \leq q_{0} \\ J & \text { otherwise }\end{cases}$
- q is a number drawn from a uniform distribution
- q_{0} is a parameter indicating the likelihood of making the choice to use the new selection criterion
- J is the choice made using the traditional probabilitic selection

Ant Colony Systems

- Update pheromones
- after all ants have traversed the graph: using only the 'best' ant

$$
\tau_{i j}=(1-\rho) \tau_{i j}+\rho \Delta \tau_{i j}^{b e s t}
$$

- while an ant is traversing the graph, for each edge that is passes:

$$
\tau_{i j}=(1-\varphi) \cdot \tau_{i j}+\varphi \cdot \tau_{0}
$$

\rightarrow encourage other ants in the same iteration to use a different path

Advantages / Disadvantages

- Advantages:
- Applicable to a broad range of optimization problems
- Can be used in dynamic applications (adapts to changes such as new distances, etc.)
- Can compete with other global optimization techniques like genetic algorithms and simulated annealing
- Disadvantages:
- Mainly applicable for discrete problems
- Theoretical analysis is difficult

Example:

Bankruptcy Prediction

- Bankruptcy prediction is a classification problem: find a classification rule that will separate firms that will go bankrupt from those that will not
- The set of attributes is usually a set of financial variables
- Most successful breakthrough in BP by Altman, 1968

Bankruptcy Prediction

- Altman selected in first instance 5 variables out of a list of 22 financial variables.
X_{1} : Working Capital / Total Assets
X_{2} : Retained Earnings / Total Assets
X_{3} : EBIT / Total Assets
X_{4} : MV of Equity / BV of Debt X_{5} : Sales / Total Assets
$Z=.012 X_{1}+.014 X_{2}+.033 X_{3}+.006 X_{4}+.999 X_{5}$

Altman's Data

- The dataset used by Altman consisted of 66 companies, 33 bankrupt (B) and 33 non bankrupt (NB)

Bankrupt

- Asset size between 0.6 mil. and 25.9 mil.
- Filed for bankruptcy between 1946-1965
- Using data for the 5 variables from 1 year before filing for bankruptcy

Non-Bankrupt

- Asset size between 1 mil. and 25 mil.
- Still in existence in 1966

Formalisation as Discrete Optimisation Problem

- For each variable (attribute) in the analysis, we generate cutpoints to discretise the data
- All possible cutpoints for a variable Xi are obtained by dividing the interval [min(i), max(i)] into a fixed number of smaller intervals
\rightarrow For each variable i we have cutpoints $j, \quad \theta_{i j}$
- For each variable i we have to choose one $\theta_{i j}$

Formalisation as Discrete Optimisation Problem

- Evaluation of a choice of cutpoints:
- we predict bankruptcy for a firm k with attributes
$\xi_{1}^{k}, \ldots \xi_{n}^{k}$
if $\xi_{1}^{k} \leq \theta_{1 c(1)} \wedge \cdots \wedge \xi_{1}^{k} \leq \theta_{n c(n)}$
where $c(i)$ is the cutpoint chosen for attribute i
- quality of a solution: the error of this choice of cutpoints on the training data

Ant Optimisation

Representation

- We can see assignments as a choice of edges in a bipartite graph \rightarrow update pheromones for each edge

Ant Optimisation

Representation

- Pheromone update for ant k

$$
\Delta_{i j}^{k}= \begin{cases}A & \text { if } c(i)=j \\ 0 & \text { otherwise }\end{cases}
$$

where A is the the number of correctly predicted training examples

- Ants search for solutions by choosing the cutpoint for each variable in a fixed order

Ant Optimisation

Representation

- Define a (heuristic) distance to each cutpoint for the next variable:
$\eta_{i j}=$ accuracy when only using
attributes $i-1$ and i with cut points $c(i-1)$ and j
\rightarrow large value is more promising
- Otherwise equal to ant systems for the TSP

Experiments

- We employ 2 datasets:
- The Altman dataset
- A custom dataset consisting of:
- 110 firms (55 B and 55 NB)
- The firms filed for bankruptcy between 1998 and 2004
- Asset size lower than 1 billion when filing for bankruptcy
- Using data 2 years prior to bankruptcy
- The NB set contains firms still 'alive’ in 2005

Experiments

- The parameters used:
$\alpha=1$
- $\beta=1$
- $\rho=0.5$
- 30 ants on the Altman dataset, 40 on the second
- Different experiments have been performed, using the whole dataset or dividing the latter in a training and test subset.
- Comparison with multiple discriminant analysis, used by Altman and the most popular method

Results

type 1 err.	type 2 err.	hitrate	st. dev.	min.	max.
$2.8(8.5 \%)$	$1.6(4.8 \%)$	93.3%	1.06	92.4%	95.5%
$2.0(6.1 \%)$	$1.0(3.0 \%)$	95.5%	N/A	N/A	N/A

TABLE I
Results obtained with the complete data set 1, the first row using the AA, THE SECOND Row using MDA.

type 1 err.	type 2 err.	hitrate	st. dev.	min.	max.
$11.4(20.7 \%)$	$3.7(6.7 \%)$	86.3%	0.9	85.5%	87.3%
$12.0(21.8 \%)$	$10.0(18.2 \%)$	80.0%	N/A	N/A	N/A

TABLE III
RESULTS OBTAINED WITH THE COMPLETE DATA SET 2, THE FIRST ROW using the AA, the second row using MDA.

Results

	TRAINING SET	TEST SET
AA	95.2%	90.8%
MDA	97.6%	95.8%

TABLE II
Results with data set 1, using a separate training and test set.

	TRAINING SET	TEST SET
AA	87.1%	81.0%
MDA	77.1%	70.0%

TABLE IV
RESULTS with data set 2, using a separate training and test set.

Results

train 1	test 1	train 2	test 2	train 3	test 3
86.9%	79.5%	88.3%	76.5%	85.7%	76.0%
77.1%	72.7%	81.4%	80.0%	92.9%	72.5%

TABLE V
RESULTS OF THE EXTRA EXPERIMENTS WITH DATA SET 2, THE FIRST ROW with the AA, THE SECOND ROW WITH MDA.

[^0]: J.L. Deneubourg, S. Aron, S. Goss and J.M. Pasteels (1990). The self-organizing exploratory pattern of the Argentine ant. Journal of Insect Behaviour, 3, 159-168.
 S. Goss, S. Aron, J.L. Deneubourg and J.M. Pasteels (1989). Self-organized shortcuts of the Argentine ant. Naturwissenschaften, 76, 579-581

